Time-dependent radiative transfer with PHOENIX
نویسندگان
چکیده
منابع مشابه
Time - dependent radiative transfer with PHOENIX
Aims. We present first results and tests of a time-dependent extension to the general purpose model atmosphere code PHOENIX. We aim to produce light curves and spectra of hydro models for all types of supernovae. Methods. We extend our model atmosphere code PHOENIX to solve time-dependent non-grey, NLTE, radiative transfer in a special relativistic framework. A simple hydrodynamics solver was i...
متن کامل3D Radiative Transfer with PHOENIX
Using the methods of general relativity Lindquist derived the radiative transfer equation that is correct to all orders in v/c. Mihalas developed a method of solution for the important case of monotonic velocity fields with spherically symmetry. We have developed the generalized atmosphere code PHOENIX, which in 1-D has used the framework of Mihalas to solve the radiative transfer equation (RTE...
متن کاملTime-dependent radiative transfer calculations for supernovae
In previous papers we discussed results from fully time-dependent radiative transfer models for core-collapse supernova (SN) ejecta, including the Type II-peculiar SN 1987A, the more ‘generic’ SN II-Plateau, and more recently Type IIb/Ib/Ic SNe. Here we describe the modifications to our radiative modelling code, CMFGEN, which allowed those studies to be undertaken. The changes allow for time-de...
متن کاملEffect of Thermal Conductivity and Emissivity of Solid Walls on Time-Dependent Turbulent Conjugate Convective-Radiative Heat Transfer
In the present study, the conjugate turbulent free convection with the thermal surface radiation in a rectangular enclosure bounded by walls with different thermophysical characteristics in the presence of a local heater is numerically studied. The effects of surface emissivity and wall materials on the air flow and the heat transfer characteristics are the main focus of the present investigati...
متن کاملModeling lidar waveforms with time-dependent stochastic radiative transfer theory for remote estimations of forest structure
[1] Large footprint waveform-recording laser altimeters (lidars) have demonstrated a potential for accurate remote sensing of forest biomass and structure, important for regional and global climate studies. Currently, radiative transfer analyses of lidar data are based on the simplifying assumption that only single scattering contributes to the return signal, which may lead to errors in the mod...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Astronomy & Astrophysics
سال: 2009
ISSN: 0004-6361,1432-0746
DOI: 10.1051/0004-6361/200810982